LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Large spatial shifts of reflective beam at the surface of graphene/hBN metamaterials.

Photo by shapelined from unsplash

We theoretically studied the Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts of reflective beam at the surface of graphene/hBN metamaterials. The results show that the GH-shift is significantly enhanced and also… Click to show full abstract

We theoretically studied the Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts of reflective beam at the surface of graphene/hBN metamaterials. The results show that the GH-shift is significantly enhanced and also possesses the large reflectivity when the light beam is incident at the critical angle near the Brewster angle. We found that the IF-shift is the largest when the reflective beam is a special polarized-beam or the reflective coefficients satisfy the conditions |rs | = |rp | and φs - φp = 2jπ (j is an integer). By changing the chemical potential, filling ratio and tilted angle, the position and width of frequency windows obtaining the maximum values of shifts can be effectively adjusted. The large and tunable GH- and IF-shifts with the higher reflectivity provide an alternative scheme to develop new nano-optical devices.

Keywords: beam surface; shifts reflective; graphene hbn; surface graphene; beam; reflective beam

Journal Title: Optics express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.