LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO2 gas.

Photo from wikipedia

In this work, a straightforward and highly sensitive design of a CO2 gas sensor is numerically investigated using the finite element method. The sensor is based on a plasmonic metal-insulator-metal… Click to show full abstract

In this work, a straightforward and highly sensitive design of a CO2 gas sensor is numerically investigated using the finite element method. The sensor is based on a plasmonic metal-insulator-metal (MIM) waveguide side coupled to a square ring cavity filled with polyhexamethylene biguanide (PHMB) functional material. The refractive index of the functional material changes when exposed to the CO2 and that change is linearly proportional to the concentration of the gas. The sensors based on surface plasmon polariton (SPP) waves are highly sensitive due to the strong interaction of the electromagnetic wave with the matter. By utilizing PHMB polymer in the MIM waveguide plasmonic sensor provides a platform that offers the highest sensitivity of 135.95 pm/ppm which cannot be obtained via optical sensors based on silicon photonics. The sensitivity reported in this work is ∼7 times higher than reported in the previous works. Therefore, we believe that the results presented in this paper are exceedingly beneficial for the realization of the sensors for the detection of toxic gases by employing different functional materials.

Keywords: gas; co2; metal; functional material; sensor

Journal Title: Optics express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.