LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lossless dielectric metasurface with giant intrinsic chirality for terahertz wave.

Photo from wikipedia

It is difficult for single-layer metal metasurfaces to excite in-plane component of magnetic dipole moment, so achieving giant intrinsic optical chirality remains challenging. Fortunately, displacement current in dielectric metasurfaces can… Click to show full abstract

It is difficult for single-layer metal metasurfaces to excite in-plane component of magnetic dipole moment, so achieving giant intrinsic optical chirality remains challenging. Fortunately, displacement current in dielectric metasurfaces can form the in-plane magnetic moment which is not orthogonal to the electric dipole moment and forms intrinsic chirality. Here, we show a lossless all-silicon metasurface which achieves giant intrinsic chirality in terahertz band. The leaky waveguide mode in the chiral silicon pillars simultaneously excite the in-plane electric and magnetic dipole moments, which triggers the spin-selected backward electromagnetic radiation, and then realizes the chiral response. The theoretical value of circular dichroism in the transmission spectrum reaches 69.4%, and the measured one is 43%. Based on the photoconductivity effect of the silicon metasurface, we demonstrate optical modulation of the intrinsic chirality using near-infrared continuous wave. In addition, by arranging the two kinds of meta-atoms which are enantiomers, we show the spin-dependent and tunable near-field image display. This simple-prepared all-silicon metasurface provides a new idea for the design of terahertz chiral meta-devices, and it is expected to be applied in the fields of terahertz polarization imaging or spectral detection.

Keywords: intrinsic chirality; chirality; chirality terahertz; metasurface; giant intrinsic

Journal Title: Optics express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.