LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fully transparent metal organic chemical vapor deposition-grown cascaded InGaN micro-light-emitting diodes with independent junction control.

Photo from wikipedia

In this work, we present fully transparent metal organic chemical vapor deposition (MOCVD)-grown InGaN cascaded micro-light-emitting diodes (µLEDs) with independent junction control. The cascaded µLEDs consisted of a blue emitting… Click to show full abstract

In this work, we present fully transparent metal organic chemical vapor deposition (MOCVD)-grown InGaN cascaded micro-light-emitting diodes (µLEDs) with independent junction control. The cascaded µLEDs consisted of a blue emitting diode, a tunnel junction (TJ), a green emitting diode, and a TJ, without using any conductive oxide layer. We can control the injection of carriers into blue, green, and blue/green junctions in the same device independently, which show high optical and electrical performance. The forward voltage (Vf) at 20 A/cm2 for the TJ blue µLEDs and TJ green µLEDs is 4.06 and 3.13 V, respectively. These results demonstrate the efficient TJs and fully activated p-type GaN in the cascaded µLEDs. Such demonstration shows the important application of TJs for the integration of µLEDs with multiple color emissions.

Keywords: control; organic chemical; fully transparent; transparent metal; metal organic; junction

Journal Title: Optics express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.