Laser beam splitting by freeform optics is promising but less studied. Instead of directly forming a target spot array, we propose to first convert the input beam into a closely… Click to show full abstract
Laser beam splitting by freeform optics is promising but less studied. Instead of directly forming a target spot array, we propose to first convert the input beam into a closely connected Gaussian sub-beam array. All the Gaussian sub-beams have the same optical field distributions which thus can produce identical discrete spots on the target plane. Such a design concept is very beneficial to ensure the consistency for laser processing. Importantly, the introduction of an intermediate Gaussian sub-beam array can reduce diffraction effects when the size of each Gaussian sub-beam is sufficiently larger than that of the corresponding sub-area within the input beam. The desired transformation can be achieved by two typical systems. The first system consists of two plano-freeform lenses. The second system is composed of a plano-freeform lens and a lens with an entrance freeform surface and an exit surface of freeform lens array. The two freeform beam splitting systems can be determined based on appropriate ray mappings among the input, intermediate and target irradiance distributions and a subsequent double-surface construction. Geometrical and physical simulations verify the effectivenesses of the two beam splitting systems.
               
Click one of the above tabs to view related content.