LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

100 kHz CH2O imaging realized by lower speed planar laser-induced fluorescence and deep learning.

Photo from wikipedia

This paper reports an approach to interpolate planar laser-induced fluorescence (PLIF) images of CH2O between consecutive experimental data by means of computational imaging realized with convolutional neural network (CNN). Such… Click to show full abstract

This paper reports an approach to interpolate planar laser-induced fluorescence (PLIF) images of CH2O between consecutive experimental data by means of computational imaging realized with convolutional neural network (CNN). Such a deep learning based method can achieve higher temporal resolution for 2D visualization of intermediate species in combustion based on high-speed experimental images. The capability of the model was tested for generating 100 kHz PLIF images by interpolating single and multiple PLIF frames into the sequences of experimental images of lower frequencies (50, 33, 25 and 20 kHz). Results show that the prediction indices, including intersection over union (IoU), peak signal to noise ratio (PSNR), structural similarity index (SSIM), and time averaged correlation coefficient at various axial positions could achieve acceptable accuracy. This work sheds light on the utilization of CNN-based models to achieve optical flow computation and image sequence interpolation, also providing an efficient off-line model as an alternative pathway to overcome the experimental challenges of the state-of-the-art ultra-high speed PLIF techniques, e.g., to further increase repetition rate and save data transfer time.

Keywords: speed; imaging realized; planar laser; deep learning; laser induced; induced fluorescence

Journal Title: Optics express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.