LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamically tunable coherent perfect absorption in topological insulators at oblique incidence.

Photo from wikipedia

The effective engineering of light absorption has been the focus of intensive research to realize the novel optoelectronic devices based on a topological insulator, a unique topologically protected surface Dirac-state… Click to show full abstract

The effective engineering of light absorption has been the focus of intensive research to realize the novel optoelectronic devices based on a topological insulator, a unique topologically protected surface Dirac-state quantum material with excellent prospects in electronics and photonics. Here, we theoretically proposed a versatile platform for manipulating the light-matter interaction employing the dynamically tunable coherent perfect absorption (CPA) in the topological insulator Bi1.5Sb0.5Te1.8Se1.2(BSTS). By simply varying the phase difference between two coherent counter-propagating beams, the BSTS-based CPA device can be continuously switched from the high transparency state to the strong absorption state, leading to the modulation of absorption ranging from 0.2% to 99.998%. Under the illumination of TE-polarized wave, the high absorption (>90%) can be implemented within a broad range from 0.47 to 1.51 μm through a proper incident angle alteration. In addition, the quasi-CPA wavelength can be flexibly selected by tuning the bulk thickness of BSTS film while maintaining high modulation depth of 104. Such BSTS-based CPA device with flexible tunability, wide absorption modulation range, and high modulation depth is expected to be utilized in a wide range of potential applications such as in next-generation coherent detectors, coherent modulators, all-optical switches, and signal processors.

Keywords: absorption; dynamically tunable; perfect absorption; coherent perfect; coherent; tunable coherent

Journal Title: Optics express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.