Ultrafast quantum optics with time-frequency entangled photons is at the forefront of progress towards future quantum technologies. However, to unravel the time domain structure of entangled photons and exploit fully… Click to show full abstract
Ultrafast quantum optics with time-frequency entangled photons is at the forefront of progress towards future quantum technologies. However, to unravel the time domain structure of entangled photons and exploit fully their rich dimensionality, a single-photon detector with sub-picosecond temporal resolution is required. Here, we present ultrafast single-photon detection using an optical Kerr gate composed of a photonic crystal fiber (PCF) placed inside a Sagnac interferometer. A near-rectangle temporal waveform of a heralded single-photon generated via spontaneous parametric down-conversion is measured with temporal resolution as high as 224 ± 9 fs. The large nonlinearity and long effective interaction length of the PCF enables maximum detection efficiency to be achieved with only 30.5 mW gating pulse average power, demonstrating an order-of-magnitude improvement compared to optical gating with sum-frequency generation. Also, we discuss the trade-off relationship between detection efficiency and temporal resolution.
               
Click one of the above tabs to view related content.