LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient sorting for an orbital angular momentum multiplexing communication link based on a digital micromirror device and a diffuser.

Photo from wikipedia

Efficient sorting multiple orbital angular momentum (OAM) spatial modes is a significant step in OAM multiplexing communications. Recently, wavefront shaping (WS) techniques have been implemented to manipulate light scattering through… Click to show full abstract

Efficient sorting multiple orbital angular momentum (OAM) spatial modes is a significant step in OAM multiplexing communications. Recently, wavefront shaping (WS) techniques have been implemented to manipulate light scattering through a diffuser. We reported a novel scheme for sorting multiplexed OAM modes faster and more accurately, using the complex amplitude WS based on a digital micromirror device (DMD) through a diffuser to shape the full field (phase and amplitude) of the OAM modes. In this study, we simulate this complex sorter for demultiplexing multiple modes and make a performance comparison with the previous sorter using the phase-only WS. Our results showed that for arbitrary two multiplexed modes, the sorter could achieve a high detection probability of more than 0.99. As the number of the multiplexed modes increases, the detection probability decreases to ∼0.82 when sorting seven modes, which contrasts the ∼0.71 of the phase-only sorters. We also experimentally verified the feasibility, that for arbitrary two modes, the sorter could reach a high detection probability of more than 0.99, and the complex sorter is capable of higher detection probability than the phase-only sorter under the same conditions. Hence, we anticipate that this sorter may potentially be demultiplexing multiple OAM spatial modes efficiently and quickly.

Keywords: based digital; angular momentum; orbital angular; sorter; efficient sorting; digital micromirror

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.