LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single-mode suspended large-core chalcohalide fiber with a low zero-dispersion wavelength for supercontinuum generation.

Photo from wikipedia

Chalcogenide glass possesses outstanding advantages, such as supercontinuum generation, but its nonlinear applications were limited by large zero-dispersion wavelength (ZDW). Traditional suspended-core fibers can shift the ZDW to near IR… Click to show full abstract

Chalcogenide glass possesses outstanding advantages, such as supercontinuum generation, but its nonlinear applications were limited by large zero-dispersion wavelength (ZDW). Traditional suspended-core fibers can shift the ZDW to near IR with a tiny core size of less than 5 µm but a large evanescent wave loss exists in these fibers. In this paper, we prepared a novel suspended-core fiber (SCF) based on chalcohalide glasses for the first time via the extrusion method, in which the ZDW of the fundamental mode in the fiber with a core size of larger than 30 µm was successfully shifted to 2.6 µm. We also calculated confinement loss (CL) of propagation modes and fundamental mode energy ratio in the fiber. We found that the minimum CL ratio of the high order modes (LP11) to the CL of the fundamental mode is 124, indicating that the single-mode operation condition is satisfied when the wavelength is more than 4.6 µm. The lowest transmission loss is 1.2 dB/m at 6.5 µm. An ultra-broad supercontinuum spectrum, covering from 1.6 to 12 µm was generated in this suspended-core fiber pumped by a 5 µm femtosecond laser. Such a wide SC in the chalcogenide SCF is due to the large core size. All these results demonstrate the potential to use the large core SCF in the application of a mid-IR laser.

Keywords: large core; supercontinuum generation; mode; dispersion wavelength; core; zero dispersion

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.