LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of thin layers using surface acoustic wave-photonic devices in silicon-on-insulator.

Photo by dawson2406 from unsplash

The analysis of thin layers deposited on various substrates is widely employed in thickness monitoring, materials research and development and quality control. Measurements are often performed based on changes to… Click to show full abstract

The analysis of thin layers deposited on various substrates is widely employed in thickness monitoring, materials research and development and quality control. Measurements are often performed based on changes to acoustic resonance frequencies of quartz micro-balance devices. The technique is extremely sensitive, but it is restricted to hundreds of MHz frequencies and requires electrical connectivity. In this work we propose and demonstrate the analysis of elastic properties of thin layers deposited on surface acoustic wave-photonic devices in standard silicon-on-insulator. The devices operate at 2.4 GHz frequency, and their interfaces are fiber-optic. The radio-frequency transfer functions of the devices are modified by sub-percent level changes to the group velocity of surface acoustic waves following deposition of layers. Layers of aluminum oxide and germanium sulfide of thickness between 10-80 nm are characterized. The analysis provides estimates for Young's modulus of the layers.

Keywords: thin layers; analysis; surface acoustic; wave photonic; analysis thin; acoustic wave

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.