We demonstrated a high output power distributed-Bragg-reflector (DBR) laser integrated with semiconductor optical amplifier (SOA) for the frequency-modulated continuous-wave (FMCW) light detection and ranging (LiDAR) system. In order to acquire… Click to show full abstract
We demonstrated a high output power distributed-Bragg-reflector (DBR) laser integrated with semiconductor optical amplifier (SOA) for the frequency-modulated continuous-wave (FMCW) light detection and ranging (LiDAR) system. In order to acquire higher output power, different from the conventional SG-DBR laser, the front mirror in this work is a section of uniform grating to get higher transmissivity. Therefore, the output power of the laser reaches 96 mW when the gain current and SOA current are 200 mA and 400 mA, respectively. Besides, we fabricated a spot size converter (SSC) at the laser output port to enhance the fiber coupling efficiency, which reached 64% coupled into the lensed fiber whose beam waist diameter is 2.5 μm. A tuning range of 2.8 nm with free spectral range (FSR) of 0.29 nm and narrow Lorentzian linewidth of 313 kHz is achieved. To realize distance and velocity measurement, we use the iterative learning pre-distortion method to linearize the frequency sweep, which is an important part of the FMCW LiDAR technology.
               
Click one of the above tabs to view related content.