Magneto-optical (MO) properties of the bilayed Au/BIG and trilayered Au/BIG/Au magneto-plasmonic crystals (MPCs) were analyzed by the finite-difference time-domain method. In contrast to the low deflection angle and transmission of… Click to show full abstract
Magneto-optical (MO) properties of the bilayed Au/BIG and trilayered Au/BIG/Au magneto-plasmonic crystals (MPCs) were analyzed by the finite-difference time-domain method. In contrast to the low deflection angle and transmission of the smooth thin film, all the heterostructures with perforated holes in the top Au film displayed a similar trend with two strong resonant bands in Faraday rotation and transmittance in the near infrared wavelength range. The bands and electric distribution relative to the component and hole structure were revealed. The MPC with plasmonic hexagonal holes was found to own superior Faraday effects with distinctive anisotropy. The evolution of the resonant bands with the size and period of hexagonal holes, the thickness of different layers, and the incident light polarization was illustrated. The Faraday rotation of the optimized bilayed and trilayered hexagonal MPCs was improved 15.3 and 17.5 times, and the transmittance was enhanced 12.1 and 11.1 folds respectively at the resonant wavelength in comparison to the continuous Au/BIG film, indicating that the systems might find potential application in MO devices.
               
Click one of the above tabs to view related content.