LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Two-photon polymerization simulation and fabrication of 3D microprinted suspended waveguides for on-chip optical interconnects.

Photo from wikipedia

Quantum and neuromorphic computational platforms in integrated photonic circuits require next-generation optical functionalities. Often, increasingly complex on-chip light-routing that allow superpositions not attainable by planar technologies are paramount e.g. for… Click to show full abstract

Quantum and neuromorphic computational platforms in integrated photonic circuits require next-generation optical functionalities. Often, increasingly complex on-chip light-routing that allow superpositions not attainable by planar technologies are paramount e.g. for artificial neural networks. Versatile 3D waveguides are achievable via two-photon polymerization (TPP)-based microprinting. Here, a 3D morphology prediction tool which considers experimental TPP parameters, is presented, enabling on-chip 3D waveguide performance simulations. The simulations allow reducing the cost-intensive systematic experimental optimization process. Fabricated 3D waveguides show optical transmission properties in agreement with simulations, demonstrating that the developed morphology prediction methodology is beneficial for the development of versatile on-chip and potentially inter-chip photonic interconnect technology.

Keywords: chip; two photon; photon polymerization; polymerization simulation

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.