High-performance image-forming systems often require high system complexity due to the overdetermined nature of optical aberration correction. What we present here is a novel computational imaging modality which can achieve… Click to show full abstract
High-performance image-forming systems often require high system complexity due to the overdetermined nature of optical aberration correction. What we present here is a novel computational imaging modality which can achieve high-performance imaging using a simple non-image-forming optical system. The presented optical system contains an aspherical non-imaging lens which is designed with the optimal transfer of light radiation between an object and a detector. All spatial frequencies of the object collected by the non-imaging lens are delivered to the detector. No image is formed on the detector, and a full-path optical diffraction calculation method is developed to recover a high-quality image of the object from multiple intensity measurements. The effectiveness and high performance of the proposed imaging modality is verified by the examples.
               
Click one of the above tabs to view related content.