LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computer-automated design of mode-locked fiber lasers.

Photo from wikipedia

We automate the mode-locked fiber laser design process using a modified genetic algorithm and an intuitive optimization loss function to control highly accurate polarization-resolved simulations of laser start-up dynamics without… Click to show full abstract

We automate the mode-locked fiber laser design process using a modified genetic algorithm and an intuitive optimization loss function to control highly accurate polarization-resolved simulations of laser start-up dynamics without user interaction. We reconstruct both the cavity designs and output pulse characteristics of experimentally demonstrated Yb-fiber all-normal dispersion, dispersion-managed, and wavelength-tuneable all-anomalous dispersion Tm-fiber femtosecond lasers with exceptional accuracy using minimal prior knowledge, and show that our method can be used to predict new cavity designs and novel mode locking states that meet target pulse requirements. Our approach is directly applicable to a broad range of mode locking regimes, wavelengths, pulse energies, and repetition rates, requires no training or knowledge of the loss function gradients, and is scalable for use on supercomputers and inexpensive desktop computers.

Keywords: automated design; computer automated; mode locked; locked fiber; mode

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.