LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sensitivity enhancement of nonlinear refractive index measurement by Gaussian-Bessel beam assisted z-scan method.

Photo from wikipedia

Characterizing the nonlinear optical properties of numerous materials plays a prerequisite role in nonlinear imaging and quantum sensing. Here, we present the evaluation of the nonlinear optical properties of Rb… Click to show full abstract

Characterizing the nonlinear optical properties of numerous materials plays a prerequisite role in nonlinear imaging and quantum sensing. Here, we present the evaluation of the nonlinear optical properties of Rb vapor by the Gaussian-Bessel beam assisted z-scan method. Owed to the concentrated energy in the central waist spot and the constant intensity of the beam distribution, the Gaussian-Bessel beam enables enhanced sensitivity for nonlinear refractive index measurement. The nonlinear self-focusing and self-defocusing effects of the Rb vapor are illustrated in the case of blue and red frequency detunings from 5S1/2 - 5P3/2 transition, respectively. The complete images of the evolution of nonlinear optical properties with laser power and frequency detuning are acquired. Furthermore, the nonlinear refractive index n2 with a large scale of 10-6 cm2/W is determined from the measured transmittance peak-to-valley difference of z-scan curves, which is enhanced by a factor of ∼ 1.73 compared to the result of a equivalent Gaussian beam. Our research provides an effective method for measuring nonlinear refractive index, which will considerably enrich the application range of nonlinear material.

Keywords: gaussian bessel; nonlinear refractive; beam; refractive index; bessel beam

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.