LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low-threshold random lasers enhanced by titanium nitride nanoparticles suspended randomly in gain solutions.

Photo by efekurnaz from unsplash

In this article, we report a low-threshold random laser enhanced by TiN nanoparticles (NPs) suspended randomly in gain solutions. Results show that the random laser with TiN NPs has a… Click to show full abstract

In this article, we report a low-threshold random laser enhanced by TiN nanoparticles (NPs) suspended randomly in gain solutions. Results show that the random laser with TiN NPs has a lower threshold than the random laser with TiO2 NPs and the underlying mechanisms are discussed in detail. The localized surface plasmon resonance of individual TiN NPs increases the pump efficiency and strengthens the fluorescence amplification efficiency of the DCM. The multiple scattering of integral TiN NPs extends the dwelling time of light in random systems, which provides more possibilities for the light amplification in the gain medium. Then, the random laser threshold as a function of the number density of TiN NPs is studied. Results show that the optimum number density of TiN NPs for the lowest-threshold random lasers is about 1.468 × 1012ml-1. When we substitute the ethanol solution with the nematic liquid crystal (NLC), the random laser threshold can be further decreased to 5.11 µJ/pulse, which is about 7.7 times lower than that of DCM dye solution with TiN NPs under the same conditions. These findings provide a cost-effective strategy for the realization of low-threshold random lasers with high-quality.

Keywords: low threshold; random laser; tin nps; threshold random; random

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.