In this paper, we propose a new type of metal-insulator-metal (MIM) hybrid cavity compound grating micro-structure array, which can achieve dual narrowband super-absorption in the near-infrared window. The thin plasmonic… Click to show full abstract
In this paper, we propose a new type of metal-insulator-metal (MIM) hybrid cavity compound grating micro-structure array, which can achieve dual narrowband super-absorption in the near-infrared window. The thin plasmonic microstructure effectively modulates coupling and hybridization effects between surface plasmon polaritons of different transmission resonance cavities to form designable dual narrowband resonance states to achieve near-infrared operation proving manipulation of the optical characteristics in the near-infrared light field. Furthermore, we conduct an in-depth theoretical exploration of the structure's unique properties, such as its high-quality factor, low noise, super-absorption, precise control, and the physical mechanism of its excellent performance in ambient refractive index sensing and detection. This study provides developmental insights for the miniaturization, easy modulation, and multi-function development of surface plasmon superabsorbers while broadening their application in near-infrared environment refractive index detection. The proposed microstructure is also suitable for integration with optical elements.
               
Click one of the above tabs to view related content.