Dark-field confocal microscopy (DFCM) facilitates the 3D detection and localization of surface and subsurface defects in high-precision optical components. The spatial resolution of conventional DFCM is commonly undermined owing to… Click to show full abstract
Dark-field confocal microscopy (DFCM) facilitates the 3D detection and localization of surface and subsurface defects in high-precision optical components. The spatial resolution of conventional DFCM is commonly undermined owing to complementary aperture detection. We employed a radially polarized (RP) beam for illumination in DFCM. The RP beam creates a sub-diffraction-sized longitudinal optical component after being focused and effectively enhances the lateral resolution by 30.33% from 610 nm to 425 nm. The resolution improvement was verified by imaging a 2D sample containing sparsely distributed gold nanorods along with a 3D neodymium glass containing surface and subsurface defects.
               
Click one of the above tabs to view related content.