LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced sensitivity of dilute aqueous adrenaline solution with an asymmetric hexagonal ring structure in the terahertz frequencies.

Photo from wikipedia

Quantitative detection of neurotransmitters in aqueous environment is crucial for the early diagnosis of many neurological disorders. Terahertz waves, as a non-contact and non-labeling tool, have demonstrated large potentials in… Click to show full abstract

Quantitative detection of neurotransmitters in aqueous environment is crucial for the early diagnosis of many neurological disorders. Terahertz waves, as a non-contact and non-labeling tool, have demonstrated large potentials in quantitative biosensing. Although the detection of trace-amount analyte has been achieved with terahertz metamaterials in the recent decades, most studies have been focused on dried samples. Here, a hexagonal asymmetric metamaterial sensor was designed and fabricated for aqueous solution sensing with terahertz waves in the reflection geometry. An absorption enhancement of 43 was determined from the simulation. Dilute adrenaline solutions ranging from 30 µM to 0.6 mM were measured on our sensor using a commercial terahertz time-domain spectroscopy system, and the effective absorption was found to be linearly correlated with the concentration (R2 = 0.81). Furthermore, we found that as the concentration becomes higher (>0.6 mM), a non-linear relationship starts to take place, which confirmed the previous theory on the extended solvation shell that can be probed on the picosecond scale. Our sensor, without the need of high-power and stable terahertz sources, has enabled the detection of subtle absorption changes induced by the solvation dynamics.

Keywords: enhanced sensitivity; terahertz; dilute aqueous; solution; sensitivity dilute

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.