Generation of 265-fs millijoule pulses at 1940 nm from a solid-state regenerative amplifier has been demonstrated. The amplification chain consists of a thulium-doped fluoride (Tm:ZBLAN) fiber oscillator, a two stage… Click to show full abstract
Generation of 265-fs millijoule pulses at 1940 nm from a solid-state regenerative amplifier has been demonstrated. The amplification chain consists of a thulium-doped fluoride (Tm:ZBLAN) fiber oscillator, a two stage Tm:ZBLAN fiber preamplifier, and a regenerative amplifier with a thermoelectrically cooled thulium-doped yttrium aluminium perovskite crystal. The newly developed light source is used for pumping an ultra broadband mid-infrared optical parametric amplifier based on a gallium selenide crystal. The 2.5-4 µm range of a multioctave supercontinuum, generated in a polarization-maintaining ZBALN fiber, is used as the MIR seed. The amplified signal in combination with the corresponding idler pulses spread from 2.5 to 10 µm in a collinear geometry.
               
Click one of the above tabs to view related content.