All-optical wavelength conversion technology based on four-wave mixing (FWM) effect is a promising development need of the modern high-speed optical signal processing system. In this work, we report on the… Click to show full abstract
All-optical wavelength conversion technology based on four-wave mixing (FWM) effect is a promising development need of the modern high-speed optical signal processing system. In this work, we report on the polarization insensitive four-wave mixing based on graphene for all optical wavelength conversion. To overcome the polarization sensitivity of FWM, a dual-pump configuration was proposed based on the combination of graphene and the optical fibers. Our experimental results illustrate that by using the dual pump configuration, the FWM-based wavelength conversion efficiency, can be enhanced by graphene with about 8 dB when the state of polarization of the two pumps are parallel. This proposed all-optical wavelength converter based on graphene may provide a new approach for the next generation optical communications and signal processing.
               
Click one of the above tabs to view related content.