LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrafast all-optical phase switching enabled by epsilon-near-zero materials in silicon.

Photo from wikipedia

Transparent conducting oxides (TCOs) have emerged as both particularly appealing epsilon-near-zero (ENZ) materials and remarkable candidates for the design and fabrication of active silicon nanophotonic devices. However, the leverage of… Click to show full abstract

Transparent conducting oxides (TCOs) have emerged as both particularly appealing epsilon-near-zero (ENZ) materials and remarkable candidates for the design and fabrication of active silicon nanophotonic devices. However, the leverage of TCO's ultrafast nonlinearities requires precise control of the intricate physical mechanisms that take place upon excitation. Here we investigate such behavior for ultrafast all-optical phase switching in hybrid TCO-silicon waveguides through numerical simulation. The model is driven from the framework of intraband-transition-induced optical nonlinearity. Transient evolution is studied with a phenomenological two-temperature model. Our results reveal the best compromise between energy consumption, insertion losses and phase change per unit length for enabling ultrafast switching times below 100 fs and compact active lengths in the order of several micrometers.

Keywords: ultrafast optical; phase switching; epsilon near; near zero; optical phase

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.