Conventionally, a symmetry-protected quasi bound state of the continuum (BIC) becomes achievable by breaking the C2 symmetry of meta-atoms. Our work exhibits a novel approach to achieving dual band quasi-BIC… Click to show full abstract
Conventionally, a symmetry-protected quasi bound state of the continuum (BIC) becomes achievable by breaking the C2 symmetry of meta-atoms. Our work exhibits a novel approach to achieving dual band quasi-BIC by breaking the C2v symmetry into Cs symmetry. Also, we show that a single band quasi-BIC can be achieved by breaking the C2v symmetry into C2 symmetry. Our metasurface of C2v symmetry is composed of double gaps split ring resonator (DSRR), and it degrades to C2 symmetry when the double gaps are displaced in opposite directions. One band quasi-BIC can be observed occurring at around 0.36 and 0.61 THz respectively with the metasurface excited by x- and y-polarized terahertz radiation, respectively. A couple of dark dipole oscillator dominates the quasi-BIC at 0.36 THz, while a quadruple-like oscillator dominates the quasi-BIC at 0.61 THz. The damping ratio and coupling coefficients of the above single quasi-BIC are close to the orthogonal polarization of the incident terahertz wave. However, the metasurface of the DSRR array degrades down to Cs symmetry when the double gaps are displaced in the same directions. A dual band quasi-BIC (0.23 THz and 0.62 THz) is found to be sensitive to the y-polarized terahertz radiation. It is found that the inductive-capacitive (LC) resonance results in quasi-BIC at 0.23 THz, while a quadrupole-like oscillation results in quasi-BIC at 0.62 THz. The quasi-BIC at 0.62 THz has a higher coupling coefficient and lower damping ratio than quasi-BIC at 0.23 THz in a metasurface of Cs symmetry. The realization of the above locally symmetric breaking on the quasi-BIC of terahertz metasurfaces is helpful for the innovation of multi-band terahertz biosensors.
               
Click one of the above tabs to view related content.