The Rayleigh resolution criterion sets the minimum separation for two-point objects to be distinguishable in a classical optical imaging system. We demonstrate that the sub-Rayleigh resolution can be achieved in… Click to show full abstract
The Rayleigh resolution criterion sets the minimum separation for two-point objects to be distinguishable in a classical optical imaging system. We demonstrate that the sub-Rayleigh resolution can be achieved in a telecentric imaging system with the help of a partially coherent illumination whose spatial coherence has lattice-like distribution. We show that the orientation-selective sub-Rayleigh imaging can be realized by controlling the spatial distribution of the coherence lattice into different symmetries. We carry out a proof-of-principle experiment to demonstrate the orientation-selective sub-Rayleigh imaging for a 1951 USAF resolution target. Our results indicate a flexible orientation-selective high-resolution imaging with spatial coherence engineering of the partially coherent light.
               
Click one of the above tabs to view related content.