LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Narrow laser-linewidth measurement using short delay self-heterodyne interferometry.

Photo by nci from unsplash

Delayed self-heterodyne interferometry is a commonly used technique for the measurement of laser linewidth. It typically requires the use of a very long delay fiber when measuring narrow linewidth (especially… Click to show full abstract

Delayed self-heterodyne interferometry is a commonly used technique for the measurement of laser linewidth. It typically requires the use of a very long delay fiber when measuring narrow linewidth (especially linewidths in the kHz-range) lasers. The use of long fibers can result in system losses and the introduction of 1/f noise that causes spectral line broadening. In this paper, we present a calculation method for processing the output of a delayed self-heterodyne setup using a short length of delay fiber, to determine laser linewidth. The method makes use of pairs of data points (corresponding to adjacent maxima and/or minima) in the signal generated from the self-heterodyne setup to determine the laser linewidth. Here, the power ratio or amplitude difference of the signal at these data points is of importance. One of the key benefits of this method is that it avoids 1/f noise which would otherwise be introduced into the measurement through the application of long fibers. The experimental results highlight that the method has a high calculation accuracy. Furthermore, the capacity for the method to utilize different pairs of data points in the self-heterodyne output to determine the laser linewidth, imparts a high degree of flexibility and usability to the technique when applied to real-world measurements.

Keywords: laser linewidth; heterodyne interferometry; delay; self heterodyne

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.