LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analytical theory of finite-size photonic crystal slabs near the band edge.

Photo from wikipedia

An analytical three-dimensional (3D) coupled-wave theory (CWT) for the finite-size photonic crystal slabs (PhCs) has been presented to depict the discretized modes at band-edges residing inside and outside the continuum.… Click to show full abstract

An analytical three-dimensional (3D) coupled-wave theory (CWT) for the finite-size photonic crystal slabs (PhCs) has been presented to depict the discretized modes at band-edges residing inside and outside the continuum. Specifically, we derive the CWT equations of slow-varying envelop function of dominant Bloch waves. By combining the trial solutions that are composed of a basis of bulk states with appropriate boundary conditions (B.C.), we analytically solve the equations and discuss the far-field patterns, asymptotic behavior and flatband effect of the finite-size modes, respectively. The proposed method presents a clear picture in physics for the origins of finite-size modes and provides an efficient and comprehensive tool for designing and optimizing PhC devices such as PCSELs.

Keywords: photonic crystal; finite size; crystal slabs; size; size photonic

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.