LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Epicenter localization using forward-transmission laser interferometry.

Photo by nci from unsplash

Widely distributed optical fibers, together with phase-sensitive laser interferometry, can expand seismic detection methods and have great potential for epicenter localization. In this paper, we propose an integral response method… Click to show full abstract

Widely distributed optical fibers, together with phase-sensitive laser interferometry, can expand seismic detection methods and have great potential for epicenter localization. In this paper, we propose an integral response method based on a forward transmission scheme. It uses spectrum analysis and parameter fitting to localize the epicenter. With the given shape of the fiber ring, the integral phase changes of light propagating in the forward and reverse directions can be used to determine the direction, depth, distance of the epicenter, and seismic wave speed. For the noisy case with SNR = 20 dB, the simulation results show ultrahigh precision when epicenter distance is 200 km: the error of the orientation angle is ∼0.003°±0.002°, the error of the P-wave speed is ∼0.9 ± 1.2 m/s, the error of the epicenter depth is ∼9.5 ± 400 m, and the error of the epicenter distance is ∼200 ± 760 m.

Keywords: epicenter localization; epicenter; laser interferometry; forward transmission

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.