LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid sensor based on a hollow square core fiber for temperature independent refractive index detection.

Photo from wikipedia

In this work, a hybrid sensor based on a section of hollow square core fiber (HSCF) spliced between two single mode fibers is proposed for the measurement of refractive index… Click to show full abstract

In this work, a hybrid sensor based on a section of hollow square core fiber (HSCF) spliced between two single mode fibers is proposed for the measurement of refractive index of liquids. The sensor, with a length of a few millimeters, operates in a transmission configuration. Due to the HSCF inner geometry, two different interferometers are generated. The first, a Mach-Zehnder interferometer, is insensitive to the external refractive index, and presents a sensitivity to temperature of (29.2 ± 1.1) pm/°C. The second one, a cladding modal interferometer, is highly sensitive to the external refractive index. An experimental resolution of 1.0 × 10-4 was achieved for this component. Due to the different responses of each interferometer to the parameters under study, a compensation method was developed to attain refractive index measurements that are temperature independent. The proposed sensor can find applications in areas where refractive index measurements are required and the control of room temperature is a challenge, such as in the food and beverage industry, as well as in biochemical or biomedical industries.

Keywords: index; hollow square; sensor based; refractive index; hybrid sensor

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.