LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrafast laser stress figuring for accurate deformation of thin mirrors.

Photo from wikipedia

Fabricating freeform mirrors relies on accurate optical figuring processes capable of arbitrarily modifying low-spatial frequency height without creating higher-spatial frequency errors. We present a scalable process to accurately figure thin… Click to show full abstract

Fabricating freeform mirrors relies on accurate optical figuring processes capable of arbitrarily modifying low-spatial frequency height without creating higher-spatial frequency errors. We present a scalable process to accurately figure thin mirrors using stress generated by a focused ultrafast laser. We applied ultrafast laser stress figuring (ULSF) to four thin fused silica mirrors to correct them to 10-20 nm RMS over 28 Zernike terms, in 2-3 iterations, without significantly affecting higher-frequency errors. We measured the mirrors over a month and found that dielectric-coated mirrors were stable but stability of aluminum-coated mirrors was inconclusive. The accuracy and throughput for ULSF is on par with existing deterministic figuring processes, yet ULSF doesn't significantly affect mid-spatial frequency errors, can be applied after mirror coating, and can scale to higher throughput using mature laser processing technologies. ULSF offers new potential to rapidly and accurately shape freeform mirrors.

Keywords: stress; ultrafast laser; frequency; laser stress; thin mirrors; stress figuring

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.