LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plasmon mode manipulation based on multi-layer hyperbolic metamaterials.

Photo from wikipedia

Metamaterial with hyperbolic dispersion properties can effectively manipulate plasmonic resonances. Here, we designed a hyperbolic metamaterial (HMM) substrate with a near-zero dielectric constant in the near-infrared region to manipulate the… Click to show full abstract

Metamaterial with hyperbolic dispersion properties can effectively manipulate plasmonic resonances. Here, we designed a hyperbolic metamaterial (HMM) substrate with a near-zero dielectric constant in the near-infrared region to manipulate the plasmon resonance of the nano-antenna (NA). For NA arrays, tuning the equivalent permittivity of HMM substrate by modifying the thickness of Au/diamond, the wavelength range of plasmon resonance can be manipulated. When the size of the NA changes within a certain range, the spectral position of the plasmon resonance will be fixed in a narrow band close to the epsilon-near-zero (ENZ) wavelength and produce a phenomenon similar to "pinning effect." In addition, since the volume plasmon polaritons (VPP) mode is excited, it will couple with the localized surface plasmon (LSP) mode to generate a spectrum splitting. Therefore, the plasmon resonance is significantly affected and can be precisely controlled by designing the HMM substrate.

Keywords: plasmon mode; hmm substrate; plasmon resonance; plasmon; mode

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.