LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable angle-selective optical transparency induced by photonic topological transition in Dirac semimetals-based hyperbolic metamaterials.

Photo from wikipedia

The tunable angle-selective transparency of hyperbolic metamaterials consisting of various multilayers of Dirac semimetal and dielectric materials are theoretically and numerically studied in the terahertz range. Three stack configurations are… Click to show full abstract

The tunable angle-selective transparency of hyperbolic metamaterials consisting of various multilayers of Dirac semimetal and dielectric materials are theoretically and numerically studied in the terahertz range. Three stack configurations are considered: alternating, sandwiched, and disordered. It is found that the proposed structures exhibit strong optical angular selectivity induced by photonic topological transition for transverse magnetic waves. Interestingly, the topological transition frequency can be flexibly modulated by changing the Fermi energy, temperature, and the releasing time of the Dirac semimetal, as well as the thickness ratio of the dielectric and semimetal layers. It is also noticed that the angular optical transparency properties are independent of the order of the proposed structure even in alternating/disordered/random configurations if the total thickness ratio of the semimetal to dielectric are the same, which makes the properties particularly easy to realize experimentally. The proposed hyperbolic metamaterial structures present a promising opportunity for wavefront engineering, offering crucial properties for applications in private screens, optical detectors, and light manipulation.

Keywords: tunable angle; topological transition; transparency; hyperbolic metamaterials; angle selective

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.