LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications.

Photo from wikipedia

Structured electromagnetic (EM) waves have been explored in various frequency regimes to enhance the capacity of communication systems by multiplexing multiple co-propagating beams with mutually orthogonal spatial modal structures (i.e.,… Click to show full abstract

Structured electromagnetic (EM) waves have been explored in various frequency regimes to enhance the capacity of communication systems by multiplexing multiple co-propagating beams with mutually orthogonal spatial modal structures (i.e., mode-division multiplexing). Such structured EM waves include beams carrying orbital angular momentum (OAM). An area of increased recent interest is the use of terahertz (THz) beams for free-space communications, which tends to have: (a) larger bandwidth and lower beam divergence than millimeter-waves, and (b) lower interaction with matter conditions than optical waves. Here, we explore the multiplexing of THz OAM beams for high-capacity communications. Specifically, we experimentally demonstrate communication systems with two multiplexed THz OAM beams at a carrier frequency of 0.3 THz. We achieve a 60-Gbit/s quadrature-phase-shift-keying (QPSK) and a 24-Gbit/s 16 quadrature amplitude modulation (16-QAM) data transmission with bit-error rates below 3.8 × 10-3. In addition, to show the compatibility of different multiplexing approaches (e.g., polarization-, frequency-, and mode-division multiplexing), we demonstrate an 80-Gbit/s QPSK THz communication link by multiplexing 8 data channels at 2 polarizations, 2 frequencies, and 2 OAM modes.

Keywords: capacity; carrying orbital; orbital angular; beams carrying; multiplexing; multiplexing structured

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.