LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bidirectional tandem-pumped high-brightness 6 kW level narrow-linewidth confined-doped fiber amplifier exploiting the side-coupled technique.

Photo by mbrunacr from unsplash

In this work, a bidirectional tandem-pumped high-power narrow-linewidth confined-doped ytterbium fiber amplifier is demonstrated based on side-coupled combiners. Benefiting from the large-mode-area design of the confined-doped fiber, the nonlinear effects,… Click to show full abstract

In this work, a bidirectional tandem-pumped high-power narrow-linewidth confined-doped ytterbium fiber amplifier is demonstrated based on side-coupled combiners. Benefiting from the large-mode-area design of the confined-doped fiber, the nonlinear effects, including stimulated Raman (SRS) and stimulated Brillouin scattering (SBS), are effectively suppressed. While the transverse mode instability (TMI) effect is also mitigated through the combination of confined-doped fiber design and the bidirectional tandem pumping scheme. As a result, narrow-linewidth fiber laser with 5.96 kW output power is obtained, the slope efficiency and the 3-dB linewidth of which are ∼81.7% and 0.42 nm, respectively. The beam quality is well maintained during the power scaling process, being around M2 = 1.6 before the TMI occurs, and is well kept (M2 = 2.0 at 5.96 kW) even after the onset of TMI. No SRS or SBS is observed at the maximum output power, and the signal-to-noise ratio reaches as high as ∼61.4 dB. To the best of our knowledge, this is the record power ever reported in narrow-linewidth fiber lasers. This work could provide a good reference for realizing high-power high-brightness narrow-linewidth fiber lasers.

Keywords: doped fiber; power; fiber; bidirectional tandem; confined doped; narrow linewidth

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.