Structured light beams that possess unique polarization distribution could offer a new degree of freedom for a variety of applications, and hence its flexible polarization manipulation is necessary. Here we… Click to show full abstract
Structured light beams that possess unique polarization distribution could offer a new degree of freedom for a variety of applications, and hence its flexible polarization manipulation is necessary. Here we experimentally report a heterodyne interference-based method for generating femtosecond cylindrical vector beam (CVB) with high-speed controllable rotated polarization states. The femtosecond CVBs are created through the superposition of two optical vortices with opposite handedness. The use of two acoustic-optical modulators (AOMs) with frequency differences allows to achieve polarization rotation in a hopping-free scheme at on demand speed. Up to 1 MHz of the rotation frequency is demonstrated by visualizing the fast rotation events through a fast-frame-rate CCD camera. Moreover, we show our method can be readily extended to produce higher order CVBs with more complex rotated polarization distributions. Such a simple yet versatile femtosecond polarization-controlled laser system has the capability to act as a nonlinear trapping platform, thus opening tremendous potential opportunities in the fields of micromachining, nanofabrication, and so force.
               
Click one of the above tabs to view related content.