Twin-field interference-based quantum conference key agreement protocols have been proposed and have achieved good performance in terms of the key rate and transmission distance in the finite-key regime. However, its… Click to show full abstract
Twin-field interference-based quantum conference key agreement protocols have been proposed and have achieved good performance in terms of the key rate and transmission distance in the finite-key regime. However, its performance significantly decreases when the strict constraint is broken regarding the optical pulse intensity and probability. Here, we propose a post-matching QCKA protocol to remove this constraint while obtaining a higher key rate. Numerical results in the symmetric case show that our protocol can obtain a transmission distance 25% more than the previous asymmetric QCKA protocol when the decoy state optical pulse intensity is 1% higher than the ideal value of the constraint, and can obtain a transmission distance 100% higher when the decoy state optical pulse intensity is 10% higher than the ideal value of the constraint.
               
Click one of the above tabs to view related content.