LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Three-color reflections in one-dimensional ordered and disordered atomic lattices with trapped N-type cold atoms.

Photo from wikipedia

Investigating and controlling light propagation in one-dimensional (1D) ordered and disordered atomic lattices is critical both fundamentally and for applications. In this study, cold atoms are trapped in 1D optical… Click to show full abstract

Investigating and controlling light propagation in one-dimensional (1D) ordered and disordered atomic lattices is critical both fundamentally and for applications. In this study, cold atoms are trapped in 1D optical lattice and driven to the four-level N configuration. In each period, the atoms exhibit a Gaussian density distribution with the average atomic density N0 (1 + Δk). When the random number Δk = 0 (the atomic density Nk(z)) corresponding to an ordered 1D atomic lattice, there are three reflection regions of high reflectivity located in two EIT windows and one large detuning range. However, the atomic density may increase (N k+(z) with Δk > 0) or decrease (N k-(z) with Δk < 0) owing to the imperfect manufacturing process or random distribution of atoms corresponding to a disordered atomic lattice. The results show that the width and height of reflections can be raised (reduced) by the increased (decreased) ratio of N k+(z)/N k (z) (N k-(z)/N k (z)) with the random distribution of lattice cells with N k+(z) (N k-(z)). When a cluster of disordered lattice cells with N k+(z) and N k-(z) is located at the front or tail of the atomic lattice, reflection symmetry can be broken. However, the symmetry and robustness can be well preserved with the random fluctuation of the average atomic density in each lattice cell.

Keywords: density; dimensional ordered; one dimensional; ordered disordered; disordered atomic; lattice

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.