Vortex beams carrying orbital angular momentum (OAM) modes show superior multiplexing abilities in enhancing communication capacity. However, the signal fading induced by turbulence noise severely degrades the communication performance and… Click to show full abstract
Vortex beams carrying orbital angular momentum (OAM) modes show superior multiplexing abilities in enhancing communication capacity. However, the signal fading induced by turbulence noise severely degrades the communication performance and even leads to communication interruption. Herein, we propose a diversity gain strategy to mitigate signal fading in OAM multiplexing communication and investigate the gain combination and channel assignment to optimize the diversity efficiency and communication capacity. Endowing signals with distinct channel matrices and superposing them with designed channel weights, we perform the diversity gain with an optimal gain efficiency, and the signal fading is mitigated by equalizing the turbulence noise. For the tradeoff between turbulence noise tolerance and communication capacity, multiplexed channels are algorithm-free assigned for diversity and multiplexing according to bit-error-rate and outage probability. As a proof of concept, we demonstrate a 6-channel multiplexing communication, where 3 OAM modes are assigned for diversity gain and 24 Gbit/s QPSK-OFDM signals are transmitted. After diversity gain, the bit-error-rate decreases from 1.41 × 10-2 to 1.63 × 10-4 at -14 dBm, and the outage probability of 86.7% is almost completely suppressed.
               
Click one of the above tabs to view related content.