LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kerr nonlinear medium assisted double-face absorbers for differential manipulation via an all-optical operation.

Photo from wikipedia

Recently, light absorbers have attracted great attentions due to their promising in applications in functional optoelectronic devices. Herein, we theoretically propose and numerically demonstrate a new absorber platform, which consists… Click to show full abstract

Recently, light absorbers have attracted great attentions due to their promising in applications in functional optoelectronic devices. Herein, we theoretically propose and numerically demonstrate a new absorber platform, which consists of a 280-nm-thick photonic nonlinear waveguide film covering on the metal grating structure. Strong reflection inhibition and absorption enhancement is achieved in both the forward and backward directions, which indicates potential novel performances since the previous reports only achieved absorption in one side due to the using of opaque metal film substrate or the reflective mirror. The anti-reflection bands or the absorption peaks at the shorter and longer wavelength ranges are related to the excitation of the propagating surface plasmon resonance by the slit-assisted grating and the cavity mode by the slit in the metal film. Strong differential manipulation is realized for the double-face absorbers via the all-optical operation. Moreover, the operation wavelengths for the double-face light absorber can be modified strongly via using an asymmetric dielectric medium for the coating films. These new findings pave approaches for subtractive lightwave modulation technology, selective filtering, multiplex sensing and detection, etc.

Keywords: operation; face absorbers; via optical; face; differential manipulation; double face

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.