LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vanadium dioxide-assisted switchable multifunctional metamaterial structure.

Photo from wikipedia

A multifunctional design based on vanadium dioxide (VO2) metamaterial structure is proposed. Broadband absorption, linear-to-linear (LTL) polarization conversion, linear-to-circular (LTC) polarization conversion, and total reflection can be achieved based on… Click to show full abstract

A multifunctional design based on vanadium dioxide (VO2) metamaterial structure is proposed. Broadband absorption, linear-to-linear (LTL) polarization conversion, linear-to-circular (LTC) polarization conversion, and total reflection can be achieved based on the insulator-to-metal transition (IMT) of VO2. When the VO2 is in the metallic state, the multifunctional structure can be used as a broadband absorber. The results show that the absorption rate exceeds 90% in the frequency band of 2.17 - 4.94 THz, and the bandwidth ratio is 77.8%. When VO2 is in the insulator state, for the incident terahertz waves with a polarization angle of 45°, the structure works as a polarization converter. In this case, LTC polarization conversion can be obtained in the frequency band of 0.1 - 3.5 THz, and LTL polarization conversion also can be obtained in the frequency band of 3.5 - 6 THz, especially in the 3.755 - 4.856 THz band that the polarization conversion rate is over 90%. For the incident terahertz waves with a polarization angle of 0°, the metamaterial structure can be used as a total reflector. Additionally, impacts of geometrical parameters, incidence angle and polarization angle on the operating characteristics have also been investigated. The designed switchable multifunctional metasurfaces are promising for a wide range of applications in advanced terahertz research and smart applications.

Keywords: metamaterial structure; structure; polarization conversion; polarization; vanadium dioxide

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.