We investigated the spin angular momentum (SAM) and nonreciprocity of ghost surface polariton (GSP) at the surface of an antiferromagnet (AF) in the normal geometry, where the AF easy axis… Click to show full abstract
We investigated the spin angular momentum (SAM) and nonreciprocity of ghost surface polariton (GSP) at the surface of an antiferromagnet (AF) in the normal geometry, where the AF easy axis and external field (H0) both are normal to the AF surface. We found that the dispersion equation is invariant when the inversions of wavevector and external magnetic field, kâ-k and H0â-H0, are taken. However, its polarization and SAM are nonreciprocal. The SAM is vertical to the propagation direction of GSP, and consists of two components. We analytically found that the in-plane component is locked to H0, or it is changed in sign due to the inversion of H0. The out-plane one is locked to k since it is changed in sign as the inversion of k is taken. Either component contains an electric part and a magnetic part. Above the AF surface, the two electric parts form the left-handed triplet with the wavevector k, but the two magnetic parts form the right-handed triplet with k. In the AF, the chirality of the SAM changes with the distance from the surface. The SAM is very large on or near the surface and it may be very interesting for the manipulation of micron and nano particles on the AF surface. These are obviously different from the relevant features of conventional surface polaritons. The SAM also is field-tunable.
               
Click one of the above tabs to view related content.