LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Different phases in non-Hermitian topological semiconductor stripe laser arrays.

Photo by nci from unsplash

As a novel branch of topology, non-Hermitian topological systems have been extensively studied in theory and experiments recently. Topological parity-time (PT)-symmetric semiconductor stripe laser arrays based on the Su-Schreiffer-Heeger model… Click to show full abstract

As a novel branch of topology, non-Hermitian topological systems have been extensively studied in theory and experiments recently. Topological parity-time (PT)-symmetric semiconductor stripe laser arrays based on the Su-Schreiffer-Heeger model are proposed. The degree of non-Hermicity can be tuned by altering the length of the cavities, and PT symmetry can be realized by patterned electrode. Three laser arrays working in different non-Hermitian phases are analyzed and fabricated. With the increasing degree of non-Hermicity, the peaks of output intensities move from the edge to the bulk. The proposed semiconductor stripe laser array can function as an active, flexible, and feasible platform to investigate and explore non-Hermitian topology for further developments in this field.

Keywords: topology; laser arrays; non hermitian; semiconductor stripe; stripe laser

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.