Fourier ptychography (FP) has been developed as a general imaging tool for various applications. However, the redundancy data has to be enforced to get a stable recovery, leading to a… Click to show full abstract
Fourier ptychography (FP) has been developed as a general imaging tool for various applications. However, the redundancy data has to be enforced to get a stable recovery, leading to a large dataset and a high computational cost. Based on the additive property of the optical pupils in FP recovery, we report batch-based alternating direction methods of multipliers (ADMM) for FP reconstruction. The reported scheme is performed by implementing partial updates in sub-problems of the standard ADMM. We validate the reconstruction performance using both simulated and experimental measurements. Compared with the embedded pupil function recovery (EPRY) algorithm, the proposed algorithms can converge faster and produce higher-quality images.
               
Click one of the above tabs to view related content.