LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-temperature and high-efficiency operation of a membrane optical link with a buried-ridge-waveguide bonded on a Si substrate.

Photo by fabiooulucas from unsplash

We demonstrate a membrane photonic integrated circuit (MPIC) that includes a membrane distributed feedback (DFB) laser and a p-i-n photodiode with a buried-ridge-waveguide (BRW) on a Si substrate, using a-Si… Click to show full abstract

We demonstrate a membrane photonic integrated circuit (MPIC) that includes a membrane distributed feedback (DFB) laser and a p-i-n photodiode with a buried-ridge-waveguide (BRW) on a Si substrate, using a-Si nanofilm-assisted room-temperature surface activated bonding (SAB) for on-chip optical interconnection. The BRW structure enhanced the lateral optical confinement compared with that of the conventional flat structure. The directly bonded membrane DFB laser using SAB had a lower thermal resistance and higher output power than the previous structure using a benzocyclobutene (BCB) bonding layer. The DFB laser had a low threshold current of 0.27 mA at 25 °C. The maximum detected photocurrent and slope efficiency were 0.95 mA and 0.203 mA/mA, respectively, at 25 °C. The MPIC was successfully operated at temperatures up to 120 °C. The 3-dB bandwidths of 16.8 GHz and 10.1 GHz were achieved at 25 °C and 80 °C, respectively, and 25 Gbps and 15 Gbps non-return-to-zero (NRZ) 215-1 pseudo-random bit sequence signals were recorded at 25 °C and 80 °C, respectively.

Keywords: temperature; ridge waveguide; efficiency; buried ridge

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.