The optical path difference (OPD) equations of the dual Wollaston prisms (DWP) with an adjustable air gap (AG) are derived by the wave normal tracing method, which is suitable for… Click to show full abstract
The optical path difference (OPD) equations of the dual Wollaston prisms (DWP) with an adjustable air gap (AG) are derived by the wave normal tracing method, which is suitable for arbitrary incidence plane and angle. The spatial distribution of the OPD for various AG is presented. The validity of the OPD equation is verified by comparing the calculated interferograms with experimentally observed one. The performance of a novel static birefringent Fourier transform imaging spectrometer (SBFTIS) based on the DWP is investigated. The spectral resolution can be adjusted by changing the AG and the field of view can reach 10.0°, which is much larger than that predicted by our previous work. The results obtained in this article provide a theoretical basis for completely describing the optical transmission characteristic of the DWP and developing the high-performance birefringent spectral zooming imaging spectrometer.
               
Click one of the above tabs to view related content.