LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-resolution and a wide field-of-view eye-safe LiDAR based on a static unitary detector for low-SWaP applications.

Photo from wikipedia

High three-dimensional (3D) resolution for a wide field-of-view (FoV) is difficult in LiDARs because of the restrictions concerning size, weight, and power consumption (SWaP). Using a static unitary detector (STUD)… Click to show full abstract

High three-dimensional (3D) resolution for a wide field-of-view (FoV) is difficult in LiDARs because of the restrictions concerning size, weight, and power consumption (SWaP). Using a static unitary detector (STUD) approach, we developed a photodetector and a laser module for a LiDAR. Utilizing the fabricated photodetector and laser module, a LaserEye2 LiDAR prototype for low-SWaP applications was built using the STUD approach, which efficiently enables short-pulse detection with the increased FoV or large photosensitive area. The obtained 3D images demonstrated a diagonal FoV of > 31°, a frame rate of up to 15 Hz, and a spatial resolution of 320 × 240 pixels within a detection range of > 55 m. This prototype can be applied to drones to rapidly detect small or thin hazardous objects such as power lines.

Keywords: swap; field view; resolution wide; wide field; resolution; lidar

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.