The orbital angular momentum (OAM) carried by twisted photons provides a promising playground for high-dimensional quantum information processing. While Bell-state measurement is the cornerstone for various quantum information applications, the… Click to show full abstract
The orbital angular momentum (OAM) carried by twisted photons provides a promising playground for high-dimensional quantum information processing. While Bell-state measurement is the cornerstone for various quantum information applications, the deterministic discrimination of the complete high-dimensional Bell states with linear optics remains relatively unexplored in the OAM state space. Here, we demonstrate a theoretical scheme for the complete four-dimensional OAM Bell-state measurement by using the single-photon hyperentangled state analyzer, in which the auxiliary two-dimensional polarization entanglement and two-dimensional path entanglement are utilized. Our scheme offers an alternative route toward enhancing the channel capacity in quantum communication and increasing the robustness against deleterious noise in practical experiments with twisted photons.
               
Click one of the above tabs to view related content.