Metasurface-based structural-colors are usually implemented by changing the dimensions of nanostructures to produce different spectral responses. Therefore, a single-size nanostructured metasurface usually cannot display structural-colors since it has only one… Click to show full abstract
Metasurface-based structural-colors are usually implemented by changing the dimensions of nanostructures to produce different spectral responses. Therefore, a single-size nanostructured metasurface usually cannot display structural-colors since it has only one design degree of freedom (DOF), i.e., the orientation angles of nanostructures. Here, we show structural-color nanoprinting images can be generated with a single-size nanostructured metasurface, enabled by designing the anisotropic nanostructure with different spectral responses along its long- and short-axis directions, respectively. More interestingly, the concept of orientation degeneracy of nanostructures can be applied in the metasurface design, which shows two spectral modulations can be implemented under different polarization directions of output light, thus extending the color-nanoprinting from single-channel to dual-channel. The proposed dual-channel metasurface used for anticounterfeiting color-nanoprinting has presented the advantages of ultra-compactness, high information capacity, and vivid colors, which can develop broad applications in fields such as high-end anticounterfeiting, high-density information storage, optical encryption, etc.
               
Click one of the above tabs to view related content.