LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bidirectional residual current in monolayer graphene under few-cycle laser irradiation.

Photo by clemono from unsplash

By numerically solving the time-dependent Schrödinger equation and semiconductor Bloch equations, the light-induced residual current in monolayer graphene driven by a circularly polarized few-cycle laser is investigated. An evident current… Click to show full abstract

By numerically solving the time-dependent Schrödinger equation and semiconductor Bloch equations, the light-induced residual current in monolayer graphene driven by a circularly polarized few-cycle laser is investigated. An evident current direction reversal is disclosed when the amplitude of the driving electric field exceeds a certain threshold value, which is absent in recent investigation [Nature550, 224 (2017)10.1038/nature23900]. Here the internal physical mechanism for the current reversal is inter-optical-cycle interference under a suitable long laser wavelength. Moreover, the reversal-related laser field amplitude depends sensitively on the ratio of ponderomotive energy to photon energy.

Keywords: current monolayer; cycle; laser; residual current; monolayer graphene; cycle laser

Journal Title: Optics express
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.